skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tanaka, Koichi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Compositional tunability, an indispensable parameter to modify materials' properties, can open up new applications for the class of van der Waals (vdW) layered materials such as transition-metal dichalcogenides (TMDCs). To-date, multi-element alloy TMDC layers are obtained via exfoliation from bulk polycrystalline powders. Here, we demonstrate direct deposition of high-entropy alloy disulfide, (VNbMoTaW)S2, layers with controllable thicknesses on free-standing graphene membranes and on bare and hBN-covered Al2O3(0001) substrates via ultra-high vacuum reactive dc magnetron sputtering of VNbMoTaW target in Kr and H2S gas mixtures. Using a combination of density functional theory calculations, Raman spectroscopy, X-ray diffraction, scanning transmission electron microscopy coupled with energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy, we determine that the as-deposited layers are single-phase, 2H-structured, and 0001-oriented (V0.10Nb0.16Mo0.19Ta0.28W0.27)S2.44. Our synthesis route is general and applicable for heteroepitaxial growth of a wide variety of TMDC alloys and potentially other multielement alloy vdW compounds with the desired compositions. 
    more » « less
  2. We present nanoscale friction measurements performed on sputter-deposited high entropy alloy (HEA) sulfide thin films [(VNbTaMoW)S2] via atomic force microscopy. The results reveal (i) the influence of deposition time on the film morphology and (ii) the presence of isolated areas of low friction on film surfaces. We compare the friction results on HEA sulfide thin films with those on a prototypical solid lubricant, sputter-deposited molybdenum disulfide (MoS2), and find that they are superior in terms of lubricative performance. Variable temperature x-ray diffraction, performed up to 973 K, reveals that HEA sulfide thin films exhibit improved oxidation resistance when compared with MoS2 films. Combined, our results show that HEA sulfide thin films have considerable potential as oxidation-resistant solid lubricant coatings. 
    more » « less
  3. The observation of characteristic A1g and E2g1 peaks, at around 408 and 382 cm−1, respectively, in Raman spectroscopy is considered the evidence of 2H-structured MoS2, probably the most extensively studied transition-metal dichalcogenide. Here, using a combination of x-ray diffraction, x-ray photoelectron spectroscopy, and resonant Raman spectroscopy, we show that the detection of A1g and E2g1 modes in Raman spectra alone may not necessarily imply the presence of MoS2. A series of Mo–S films, ≈ 20-nm-thick, are grown on single-crystalline Al2O3(0001) substrates at 1073 K as a function of H2S partial pressure, pH2S (= 0, 0.01%, 0.1%, and 1% of total pressure) via ultra-high vacuum dc magnetron sputtering of a Mo target in 20 m Torr (2.67 Pa) Ar/H2S gas mixtures. In pure Ar discharges and with pH2S up to 0.1%, i.e., pH2S ≤ 2.67 × 10−3 Pa, we obtain body centered cubic (bcc), 110-textured films with lattice parameter a increasing from 0.3148 nm (in pure Ar) to 0.3151 nm (at pH2S = 2.67 × 10−4 Pa), and 0.3170 nm (at pH2S = 2.67 × 10−3 Pa), which we attribute to increased incorporation of S in the Mo lattice. With 1% H2S, i.e., pH2S = 2.67 × 10−2 Pa, we obtain 000l oriented 2H-structured MoS2.0±0.1 layers. Raman spectra of the thin films grown using 0.1% (and 1%) H2S show peaks at around 412 (408) and 380 cm−1 (382 cm−1), which could be interpreted as A1g and E2g1 Raman modes for 2H-MoS2. By comparing the Raman spectra of MoS2.0±0.1 and Mo:S thin films, we identify differences in A1g and E2g1 peak positions and intensities of defect-sensitive peaks relative to the A1g peaks that can help distinguish pure MoS2 from non-stoichiometric MoS2−x and multiphase Mo:S materials. 
    more » « less